
Mean-field approximation with coherent anomaly method for a non-equilibrium model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 L145

(http://iopscience.iop.org/0305-4470/26/4/004)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phy. k. Math. Gen. 26 (1993) L145-Ll50. Printed in the UK 

LE'ITER TO THE EDITOR 

Mean-field approximation with coherent anomaly method for 
a non-equilibrium model 

A L C Ferreira and S K Mendiratta 
Depanamento de Fisica, Universidade de Aveiro, 3800 Aveiro, Portugal 

Received 11 N w e m k r  1992 

Abslraei A mean-field approximation for a w non-equilibrium lattice model, known as 
model A [I], b considered allowing us Lo wmpute the probability of a mnfiguration of a 
given duster of sites. The mean-field equations are numerically solved in the stalionary 
regime for different duster sizes L (< 15). From a finite-size analpis and the application 
of the wherenl anomaly method (CAM) 121 ye compute tile critical parameter of the 
model, the correlation length aitical exponent V I  and the order parameter aitical 
ezponent p; the rerults are in agreement with those obtained by other methods. 

In this letter we consider a 1D non-equilibrium lattice model, known as model A; 
although being a simple model it still exhibits a continuous non-equilibrium phase 
transition. The model was proposed as a simplification of the ZGB (23, Gulari and 
Barshad) model [3], preserving, however, some of its important physical features [I]. 
Single-component models of this type with a unique absorbing state are expected to be 
in the universality class of Reggeon field theory [4,5] as is also the case for directed 
percolation [6]. Quite extensive studies of this model have been done using both 
the Monte Carlo method [l] and the series expansion technique [1,7,8] leading to 
precise estimates of the critical exponents and the critical parameter. We use here yet 
a different approach, based on a combination of the mean-field type approximation 
and the coherent anomaly method (CAM) [2].  Mean-field approximations have been 
applied before to non-equilibrium lattice models [l, 5,9] giving a semi-quantitative 
picture of the phase diagram. However, as they ignore long-range correlations present 
at continuous phase transitions they yield the usual mean-field critical exponents. The 
CAM furnishes a way to obtain the correct critical exponents and entails considering 
successive approximations, each including more correlations than the previous one. 
Such a method was successfully applied to various equilibrium models [2,10-12]. Our 
main goal here is to see how it works when applied to a ID non-equilibrium lattice 
model. In a nutshell our strategy can be summarized as follows. We consider a 
succession of clusters of increasing size L. The fact that the local dynamics depends 
only on the state of neighbouring sites allows us to consider the dynamics of a given 
cluster exactly except that the behaviour of the two boundary sites is included in an 
approximate way. The critical exponents obtained have mean-field value; 'the critical 
parameter and the critical amplitudes depend, however, upon the size L of the cluster. 
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We then apply the CAM to extract, in a consistent way, the true critical exponents and 
the critical parameter from a succession of Ldependent parameters. The system of 
mean-field equations which we use has been described before [I31 and a preliminaly 
version of the results of applying CAM to this model has already been given 1141. 
Recently, a series of general cluster approximations was proposed [15]. It turns out 
that our mean-field approximation is a special case of these cluster approximations. 

Consider a ID array of sites where particles are deposited at the rate A with the 
proviso that the site where deposition occurs is found vacant. A particle leaves its 
site i with rate 1 if one or both of its neighbouring sites are empty. We can assign 
an King-type variable ui to each lattice site such that, if a particle is present, the 
variable takes value 1 and is zero otherwise. With this notation the transition rates 
for deposition and evaporation at a specified site i can be written as 
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The order parameter of the transition is the fraction of vacant sites, p ,  and 
it becomes zero above the critical parameter d u e  A,. We, therefore expect, for 
A Q A,, 

p - (A, - A)P. (2) 

The hown best estimates of these parameters, A, and 13, are given by a series 
expansion [SI and the values obtained are A, = 0.574 141(2) and /3 = 0.27674(2). 
Other quantities associated with other exponents can also be studied but they are not 
used here. For a discussion of the present best estimates of some of these exponents, 
see [16]. 

We can write down the master equation for the time evolution of the probability of 
a co~gurat ion of an Lsite cluster PL(ul , .  . . ,ui,. . . uF, 1 )  in terms of probabilities 
PL+Z(UIJ,. . . , U ; ,  . . , o ~ + ~ ,  1 )  of the configurations of higher order, ( L + Z), cluster. 
It should be noted that all the probabilities are conditional probabilities dependent 
upon the initial configuration. The equation is 

= ~ ' [ ( ~ d ( ~ - ~ k ) f " e ( ' J k - l r ~ - ~ k r " k f l ) )  

x P L t z ( u u , . ' . , l - , u k , .  , . uLtl,l)-(U~d(.k)+UJe(.b-lrOk,uk+,)) 
x PL+Z(.U, . . . , U  k i . . . " L + l I  t)I (3) 

where the summation E' denotes, summation over the variables vu, uLtI,  and the 
site index k (1 < k < L). In order to obtain an equation that contains only the 
probabilities of configurations of L sites we make the following approximation: 

With this approximation the set of equations (3) can be reduced to a closed 
set of nonlinear coupled equations. The solution can be obtained algebraically for 
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small clusters and numerically for bigger clusters. The solution gives both the time- 
dependent and the stationary behaviour. From the solutions of increasingly large 
cluster sizes we construct a series of approximations in the CAM spirit It should 
be noted that in the mean-field approximation even finite clusters have true critical 
behaviour in the sense that the order parameter is zero above a certain critical value 
A t ,  which, however, depends upon the cluster size L. This parameter is expected to 
approach the true A, with increasing L in a manner typical of finite systems 1171: 

(5) L - A, + aL-l/w.L A, - 
uL being the critical exponent of the correlation length. The order parameter p, 
vanishes at A: as 

p,(A) - AL(A,L - A)@mr (6) 

where p,, is the mean-field exponent. The central assumption of CAM is that the 
true critical behaviour p(A) is the envelope function of the family of p,(A) curves. 
It is then concluded [2,11] that the amplitude A, should increase with the cluster 
size L with a given exponent. This exponent is, however, related to the mean-field 
and the true exponent in the following manner: 

A, - ( A t  - Ac)(@-@d) 

A, L ( @ t d - @ ) / Y l . .  (76) 

(74  

The value of pmr can he seen to be unity by solving the equations in the stationary 
regime for small clusters (up to L = 4, in our case) exactly. The order parameter p ,  
is, in general, a quotient of two polynomials which can be expanded in power series 
around A:. Equations (7u) and (76) can be used to obtain the exponent p either 
by considering A, as a function of L or as a function of ( A t  - A). Sometimes it is 
necessary to include first-order corrections [11,12] to the 4, behaviour, not included 
in (7). Such corrections will modify (7) to 

A ,  - a ( A t  - Ac)@-@d + b ( A t  - A,)@-@,+' (sa) 
(%) A, - aL(@mt-@)/1,.L + bL(@d-@-') /v .L.  

The method we have used to obtain A t  and A, numerically is the following. 
First we approximately locate the critical point. For this we numerically solve the 
equations for several A values. For each value of A,  the time integration is stopped 
when the order parameter does not change by more than IO-'" in a single step. Near 
the critical point, the A values scanned were chosen to differ from each other by 
5 x The first estimate of A? and A, is then obtained, following equation (6), 
by linear extrapolation from pairs of ( A , p )  values. As we have mentioned before, 
the second- (and higher) order powers of ( A t  - A) are important when we are not 
extremely close to the critical point. Therefore the first estimates of A t  and A, 
were improved by taking into account the second-order term; the final estimates are 
listed in table 1. The estimated error in A t  and A, are, respectively, 2 x 
and Comparison with the exact solution for small clusters shows that the A: 
values tend, systematically, to be slightly overestimated and the A, values slightly 
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underestimated. This is due to the approximation involved in the criterion used to 
check that the stationary regime has been reached. The critical parameter value could, 
in principle, be obtained using equation (5). However, since we have corrections that 
show up as an additional term of the form bL-' on the right-hand side, we have 
to be careful. In order to obtain A, we have used equation (5) including such a 
correction term. Here, to start with we have used the uI value obtained in [lS], 
ie.  vL = 1.101(3). From the data corresponding to four successive cluster sizes we 
obtain the parameters, as shown in the first three columns of table 2. As can be seen 
the A, values obtained are slightly lower than those obtained in [SI. The exponent 
I was found to be near 2, as is also observed in other finite systems [19,u)]. Better 
results are obtained using a constant value of z (= 2), thus reducing the number of 
free parameters. Therefore, starting with either a fixed value of vL (vI = 1.101) or 
a fixed value of A, (A, = 0.574 141) we obtain, respectively, A, and vs. The results 
are shown in the last three columns of table 2 and they are in very good agreement 
with the previous estimates [& IS]. An independent determination of both A, and 
vL, however, requires better precision for the data listed in table 1. 

Table 1. The parameten A t  and Ar. as obtained for differen1 duster sizes 

, . .  . , , , . , . , , . ,  , , . . , , . ,  , ,  , ,  L A: . .. AL 
1 2  0.5 
2 1  2 
3 J z 7 ? j  3 
4 0.7406862 ... .4 .081. .  , 
5 0.7009435 5.097 
6 0.676598 1 6.053 
7 0.MO 1943 6.953 
8 0.6484031 7.808 
9 0.6395206 8.624 

10 0.6325877 9.406 
11 0.6270242 10.159 
12 0.6224594 .'' 10.883 
13 0.6186447 11.587 
14 0.6154082 12.270 
15 0.6126269 12.933 

The determination of the exponent p could, in principle, be done using 
equations (7u) and (7b). For this we have to use previous estimates of A, and uI, 
respectively. The results are shown in the second and third columns of table 3 where 
each p estimate follows from a pair of A, data points. These estimates increase 
with cluster size, approaching the expected d u e ,  although here they are seen not 
to converge. The results for the exponent, however, can be considerably improved 
by including the corrections to the leading behaviour as shown in equations (&r) 
and (a). The results of implementing this procedure are shown in the last two 
columns of table 3. We have made, here, a series of least-squares fits each including 
sets of six data points corresponding to successively larger c luste~~.  Wc verified that 
including a lower number of data p in t s  in each fit results in fluctuating estimates of 
the exponent for large clusters. These fluctuations are already seen in our six data 
point fits, reflecting the uncertainly in the determination of the exponent. We believe 
this to be a consequence of not having sufficient precision in the determination of 
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Table Z In the second and third columns we list the A< and z estimates as oblained by 
using equation (5) with a correction lem bL-=. Here we have used a constant value 
for "1 (= 1.101). Starting with a mnstanl value for z (= 2) we have also used the 
Same equation to oblain A, and YI. When determining A, we use UL = 1.101 and 
when determining V I  we use A, = 0.574 141 (8,181. Corresponding results are listed in 
the last WO columns. The columns under the l a k l  [L], Lz] indicate the set of points 
used for the mrresponding parameter estimation. 

z variable 2 = 2  

[Lt,LZl -4, E [Lt,Lzl YL 

[4*71 0.57300 216 [5,7] 0.57509 1.125 
wi 0.57367 211 [6,8] 0.57469 1.117 
[691 0.57381 209 [7,9] 0.57448 1.112 
[7,10] 0.57388 208 [S,lO] 0.57435 1.109 
[a,iil o m m  208 [9,11] 0.57424 1.106 
[9.12] 0.57401 2 0 5  [10,12] 0.57421 1.104 
(10,131 0.57381 211 [11,13] 0.57415 1.101 
[11,14] 0.57400 205 [12,14] 0.57412 1.1M) 
IIZISI 0.574 15 1.99 r13,isi 0.574 13 1.103 

Table 3. The exponent B as obtained using equations (7a), (7b), (80) and (86). Whenever 
needed we have used the bg t  known estimates of the parameten A, and YI 18,181. As 
in table 2 the columns labelled [ L I ,  Lz] list the dala point intervals used for a given 
exponent determination. 

[L] ,  L ~ I  B v.1) B ~1.2) [ L ] ,  L ~ I  B (8.1) B (8.2) 
16.71 0.2051 0.0094 izn 0.1499 0.2201 
i7;sj 0.2134 0.0442 i3.4 J 0.224 0.2442 
[VI 0.2194 0.0704 [4,9] 0.2481 0.2571 
[9,10] 0.2258 0.0931 [5,10] 0.2593 0.2617 
[10,11] 0.2309 0.1113 [611] 0.2646 0.2684 
111.121 0.2366 0.1279 V.121 0.2724 0.2779 
i i i i 3 j  0.2381 0.1381 ia;13j 0.2762 0.2766 
113,141 0.2415 0.1491 19,141 0.2752 0.2732 

A, and A t .  The results are, however, consistent with the precise estimate given in 

In conclusion, we have developed a numerical algorithm that enables us to obtain 
the solution of the problem using the mean-field approximation for reasonably large 
clusters. From a finite-size relation, equation (5), we have computed the critical 
parameter A, and the exponent vs, and the results are in agreement with previous 
estimates. We have verified that a correction term should be included corresponding 
to an exponent I (F= 2). The application of CAM furnishes us estimates of the order 
parameter exponent p, which are also in agreement with the results obtained with 
other methods. As we have accw to the time-dependent solution of the mean-field 
equations, we can obtain other (dynamic) exponents. 
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of the present work. Thanks are also due to Dr M C Marques and Dr M A Santos 
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facilities. A L C Rrreira wishes to thank also INIC Portugal for financial support. 
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